THE RECAR PROGRAM -RESEARCH CENTER FOR AUTONOMOUS ROAD VEHICLES

Dr. SZALAY, Zsolt Car of the Future - Conference 19.05.2016

Participation in several Autonomous Vehicle related projects funded by the EU and/or Hungarian Government:

- 2000-2003 Chauffeur II (EUR 10.0 M, DaimlerChrysler)
- 2001-2004 PEIT (EUR 3.6 M, DaimlerChrysler)
- 2004-2007 SPARC FP6 (EUR 12.6 M, DaimlerChrysler)
- 2004-2008 EJJT (EUR 6.2 M, Knorr-Bremse)
- 2008-2011 HAVEit FP7 (EUR 27.5 M, Continental Automotive)
- 2008-2011 TruckDAS (EUR 1.13 M, Knorr-Bremse)
- 2014-2016 ERNYO-13 (EUR 0.4 M, Bosch)
- 2015-2019 PROSPECT (EUR 6,9 M, IDIADA)

Name	PEIT: Powertrain Equipped with Intelligent Technologies
Dates	2001 to 2004
Total cost	EUR 3.6 million
EU contribution	55%
Funding scheme	EU-FP5
Academic partner(s)	Budapest University of Technology and Economics (Hungary), Universität Stuttgart (Germany), Universität Karlsruhe (Germany), Technical University of Braunschweig Carolo Wilhelmina (Germany)
Industrial partner(s)	DaimlerChrysler AG (Germany), Knorr Bremse Fékrendszerek Kft (Hungary), TÜV NORD STRASSENVERKHEHR GMBH (Germany), RWTÜV Fahrzeug GmbH (Germany), TÜV Automotive GmbH Unternehmensgruppe TÜV Süddeutschland (Germany), Kraftfahrt–Bundesamt (Germany)
Results	To achieve an overall improvement in safety an intelligent powertrain was developed which provides an interface to serve as a base for all accident prevention and driver assistant functions of the vehicle.

Name	Highly Automated Vehicles for Intelligent Transport
Dates	From 2008-02-01 to 2011-07-31
Total cost	EUR 27.5 million
EU contribution	62%
Funding scheme	FP7-ICT collaborative project
Academic partner(s)	Universität Stuttgart, Deutsches Zentrum Luft- und Raumfahrt e.V.
Industrial partner(s)	Continental Automotive GmbH (Germany), Volvo Technology Corporation AB, Volkswagen AG
Results	The path-breaking HAVE-it proposal aims at the long-term vision of highly automated driving. Within this proposal important intermediate steps will be developed, validated and demonstrated. These intermediate results on the one hand offer high potential for exploitation within road vehicle series production.

Name	TRUCKDAS
Dates	From 2015-05-01 to 2018-11-01
Total cost	EUR 1.13 million
EU contribution	0%
Funding scheme	Research and Technology Innovation Fund of National Office for Research and Technology
Academic partner(s)	MTA SZTAKI (Hungary)
Industrial partner(s)	Knorr-Bremse Fékrendszerek Kft. (Hungary), Trigon Elektronika Kft. (Hungary)
Results	Intelligent vehicle applications and the sensors and actuators necessary for their expressed functions, which systems can reduce the most significant safety risks – shown in international statistics as well – of commercial vehicles. The applied project management is presented. The system prototypes and technologies that have been created, as well as the necessary test benches, measurement and simulation environments used for their development are shown.

Name	PROSPECT: Proactive Safety for Pedestrians and Cyclists
Dates	From 2009-09-01 to 2011-12-31
Total cost	EUR 6.938 million
EU contribution	100%
Funding scheme	Horizon 2020 MG.3.4-2014
Academic partner(s)	Budapest University of Technology and Economics (BME), Chalmers University of Technology, IFSTTAR, TNO, University of Amsterdam, University of Nottingham, Swedish National Road and Transport Research Institute (VTI), Volvo Car Corporation (VCC)
Industrial partner(s)	AUDI AG , Bundesanstalt für Straßenwesen (BASt), BMW Group (BMW), Robert Bosch GmbH (Bosch), Continental (CONTI), Daimler AG (Daimler), 4a Engineering GmbH (4aE), Toyota Motor Europe (TME)
Results	Significant progress on active pedestrian safety, as a result of advances in video and radar technology. This has culminated in the market introduction of first-gen active pedestrian safety systems, which perform autonomous emergency braking (AEB-PED) in case of critical traffic situations. PROSPECT will significantly improve the effectiveness of active VRU safety systems compared to those currently on the market.

Research partners

- Industrial partners
 - OEM:
 - Daimler 싱
 - Volkswagen 🔇
 - Volvo 💬
 - Audi Hungária Motor
 - TIER 1
 - Bosch 🖲 Bosch
 - Knorr-Bremse
 KNORR-BREMSE
 (())
 - Haldex Haldex
 - Continental **Ontinental**

- Academic Field
 - Institutes:
 - MTA SZTAKI
 - Institut National de Recherche en Informatique et en Automatique
 - Deutsches Zentrum f
 ür Luft- und Raumfahrt (DLR)
 - Universities
 - Universität Stuttgart
 - Universität Karlsruhe

RECAR Program

- **RE**search **C**enter for **A**utonomous **R**oad vehicles (RECAR)
- Unique Cooperation
 - Industrial partners (Bosch and Knorr-Bremse)
 - Academic sphere (BME, ELTE, MTA SZTAKI)
- Market Demand
 - Global trends and timing in automotive development
 - 4 OEMs and 15 TIER1s are in Hungary
 - Continuous need for qualified engineers
- Strong Governmental Support
 - Beyond manufacturing, provide higher added value
 - ROI calculation on a national economic level

RECAR Education

- Autonomous Vehicle Control Engineer M.Sc. (BME)
- Computer Science for Autonomous Driving M.Sc. (ELTE)

ELTE

BME

Autonomous vehicle control engineer MSc

				1			2								3								4						
1	Numei	ical ma	themat	ics			Industrial image processing A									Automotive R&D processes and quality systems													
2								Vajta László								István													
3							ELTE							BME							BME								
4	2	0	1	f	4	Π	IK	3	1	0	v	4	Π	VIK	3	0	0	f	4	GH	GJT								
5	Contro	l theor	y and s	ystem (dynam	ics		High pe	erform	ance m	icroco	ntroller	s and in	terface	Proje	ct manag	gement	:			BME								
6	Bokor J	ózsef-G	áspár P	éter				Tevesz	Gábor						2 0 0 f 2 GH GT						GTK								
7							BME							BME	Mach	ine visio	n												
8	2	0	2	v	4	TT	KJIT	2	1	0	f	4	TT	VIK	Szirán	iyi Tamás	;												
9	ntellig	ent sys	tems					Human	n facto	rs in tra	ffic en	vironm	ent	ELTE							BME								
10	Dobrov	viecki Ta	adeusz					2	0	0	f	2	GH	IK	2	0	2	v	4	SZT	ALRT								
1							BME	Legal framework of autonomous vehicles ELT								y and see	curity i	n vehio	le indu	stry									
2	3	0	0	f	4	TT	VIK	2	0	0	f	2	GH	IK	Sághi	Balázs					BME								
.3	Compe	nsation	n block					Localiz	ation a	and map	oping				2	0	0	f	3	SZT	KJIT								
4								Barsi Á	rpád						Design and integration of embedded systems														
.5														BME	Majzi	k István					BME			Diplo	ma	thes	is		
6								2	0	2	f	4	SZT	EMK	2	1	0	v	3	SZT	VIK								
.7								Autono	omous	robots	and ve	ehicles			Traffi	c modell	ing, sin	nulatio	n and c	ontrol									
8								Kiss Bá	lint						Varga	István													
.9														BME							BME								
20								2	1	0	v	4	SZT	VIK	2	0	2	f	4	SZT	KJIT								
21								Autom	otive e	environ	ment s	ensors			Auto	motive n	etwork	c and c	omm. s	ystems									
22				v				Bécsi T	amás						Szala	Zsolt													
23	_	_	_	f												_	_				BME								
24	6	0	6	t	12	SZV	BME			_		_		BME	2	0	2	v	4	SZI	GJI								
25	/ehicle	e dynan	nics					2	0	2	V	5	SZI	KJH	Auto	mated ve	ehicle d	lesign	project										
26	Vémet	h Huba			2	671	BIME	Autom	ated d	riving s	ystem	5			~ ((D/)													
<u></u>	2	0	1	V	3	521	GII	Szalay A	Zsolt						Gaspa	ar Peter					BIVIE								
8	Vehicle	e testing	g and v	alidatio	on		DAG								1	0	2		3	SZI	KJI I								
29	zabo I	Salint	2	F	2	671	BIVIE	2	0	2		-	671	BIME	Neme	th Huba	2		2	671	BIVIE	0	20	0	ſ	20	ön		
0	0	0	3	T	3	521	GI	2	0	2	v	5	521	GI	1	0	2	V	5	521	GI	0	30	0	T	30	OP		

Autonomous vehicle control engineer MSc

- Compensation blocks for equalizing knowledge level
 - for Vehicle engineers
 - for Mechanical/Mechatronical engineers
 - for Electrical engineers
 - for Informatics

For vehicle engineer BSc	For e	lectrical e		For informatics BSc																						
Signal processing fundamentals	als			Vehicle operation								Embedded Operating Systems and Client Applicatio														
																Tevesz Gábor										
E	E					BME							BME							BME						
2 0 2 f 4 SZV	K 2	0 2	f	4	SZV	VIK	2	0	2	v	4	SZV	GJT	3	1	0	f	4	SZV	VIK						
Programming in C- and Matlab	d Paradig	gms	Auto	motive v	ehicle sy	/stems				Automotive vehicle systems																
Bécsi Tamás	Lengyel La	Lengyel László							Szabó Bálint						Szabó Bálint											
E	E					BME							BME							BME						
2 0 2 f 4 SZV	К 2	1 0	v	4	SZV	VIK	2	0	2	f	4	SZV	GJT	2	0	2	f	4	SZV	GJT						
Software Development Methods and Paradigm	Automoti	ive vehicle s	ystems				Vehicle mechanics fundamentals Vehicle mechanics fundamentals							ndamer	ntals											
Lengyel László Szabó Bálint								Szabó Bálint Szabó Bálint																		
E	E					BME							BME							BME						
2 1 0 v 4 SZV	K 2	0 2	f	4	SZV	GJT	2	0	2	v	4	SZV	GJT	2	0	2	v	4	SZV	GJT						

RECAR Research & Development

- Challenges addressed in RECAR
 - Liability how to program responsibility and liability into vehicles?
 - Transparency of data handling and data access modes
 - **Privacy** how to guarantee protection of personal data?
 - **Cyber Security** how to prevent misuse of intelligent functions?

- Knowledge gained is transferred into education
- Audi TT based vehicle simulator
 - https://www.youtube.com/watch?v=Wa7vpGFDLYQ&noredirect=1

RECAR Research & Development

BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS FACULTY OF TRANSPORTATION ENGINEERING AND VEHICLE ENGINEERING

14

RECAR Testing & Validation

- University laboratories
 - Technology research lab
 - Component analysis lab
 - System integration lab
 - Vehicle-in-the-loop lab
 - Automotive Proving Ground project
 - Standard vehicle endurance testing functions
 - Autonomous Vehicle specific testing functions
 - Urban city crossings, suburban traffic, Highway+
 - "Smart City" features
 - intelligent lighting
 - traffic control, etc.
 - Moving obstacles, C2X communication

RECAR Testing & Validation

- Autonomous Vehicle Proving Ground
 - Industrial partners:
 - Knorr-Bremse
 - Bosch
 - Continental
 - AVL
 - Thyssen Krupp
 - TÜV Rheinland KTI
 - Academic partners:
 - BME (Academic Coordinator)
 - Szécheny István University
 - Pannon University
 - Óbuda University
 - Kecskemét College
 - University of Szeged

Example: Mcity, MI

BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS

Dr. SZALAY, Zsolt

email: zsolt.szalay@gjt.bme.hu

